Interest in Deep Learning has been growing in the past few years. With advances in software and hardware technologies, Neural Networks are making a resurgence. With interest in AI based applications growing, and companies like IBM, Google, Microsoft, NVidia investing heavily in computing and software applications, it is time to understand Deep Learning better!

In this workshop, we will discuss the basics of Neural Networks and discuss how Deep Learning Neural networks are different from conventional Neural Network architectures. We will review a bit of mathematics that goes into building neural networks and understand the role of GPUs in Deep Learning. We will also get an introduction to Autoencoders, Convolutional Neural Networks, Recurrent Neural Networks and understand the state-of-the-art in hardware and software architectures. Functional Demos will be presented in Keras, a popular Python package with a backend in Theano and Tensorflow.

Code

Create an account on IBM Data Science Experience and upload these workshop examples to follow along this tutorial. Send us a note on the right and we will share login info for additional code case studies

Slides

Upcoming Courses

Chicago and OnlineMay 30th and 31st

Deep Learning Workshop

QuantUniversity's Deep Learning Workshop provides the foundation to understand the core techniques in Deep Learning.

This is a hands-on course with examples in Python, Keras, TensorFlow and Spark

This workshop will be delivered in Chicago and Online by Dr.Victor Shnayder and Sri Krishnamurthy

New York & OnlineJune 8th, 9th

Machine Learning Workshop

QuantUniversity's 2-day Machine Learning Workshop provides the core Data science and machine learning techniques and applications in finance.We will also discuss the role of Big data and Deep Learning

This is a hands-on course with examples in R, Python and Spark

This workshop will be delivered in New York and online by Sri Krishnamurthy

Boston & OnlineJune 19th,20th

Anomaly Detection Workshop

QuantUniversity's 2-day Anomaly Detection Workshop provides the core techniques and best practices in Anomaly Detection and Outlier Analysis with cross-sectional and time series data.

This is a hands-on course with examples in R, Python and Spark

This workshop will be delivered in Boston and Online by Sri Krishnamurthy

Back to top